¿Qué es un ser vivo?

what-is-life-660La actividad científica busca básicamente responder preguntas. En biología, una de las preguntas centrales es “¿Qué es un ser vivo?”. Uno pensaría que esa cuestión ya debería estar resuelta a esta altura, ¿no? Bueno, no del todo…

Dejo acá un artículo que escribí para la sección de educación de la revista Ciencia Hoy. En él intento mostrar una posible manera de enseñar un tema curricular típico de la enseñanza de la biología como es la idea de qué es un ser vivo, pero abordando a la vez dos aspectos que se complementan: el contenido disciplinar propiamente dicho y también habilidades de pensamiento propias de la ciencia.

Se puede descargar la versión en pdf de este artículo en este enlace

¿Qué es un ser vivo?

Definir la vida: los problemas que crea un problema

La enseñanza de ciencias en los niveles primario o secundario presenta pocos problemas tan ricos como el de enseñar a distinguir entre qué está vivo y qué no lo está. Intelectualmente, es el primer problema con el que se enfrenta la biología, y uno de los más sutiles. El Diccionario de la Real Academia Española define vida como:

  1. Fuerza o actividad interna sustancial, mediante la que obra el ser que la posee.
  2. Estado de actividad de los seres orgánicos.

La primera acepción es clara: concibe la vida como un principio interno de algún tipo que caracteriza como vivo al sujeto que lo posee. Responde a una concepción filosófica que suele llamarse vitalismo. La segunda acepción, en cambio, puede inducir a confusión: podemos suponer que sus autores no quisieron afirmar que una gota de petróleo que cae de un décimo piso está viva, por ser una sustancia orgánica en la actividad de caer; pero no está claro qué quisieron afirmar. Seguramente consideraron que ser orgánico es sinónimo de ser vivo, y es distinto de lo que los químicos llaman sustancia orgánica, en cuyo caso ambas acepciones son prácticamente iguales. Un diccionario, sin embargo, no define conceptos: solo registra el significado de palabras. En una obra mencionada entre las lecturas sugeridas, el biólogo Ernst Mayr (1904-2005) escribió:

Se ha intentado una y otra vez definir la vida. Esos esfuerzos han sido más bien inútiles, ya que está ahora muy claro que no hay ninguna sustancia especial, objeto o fuerza que pueda ser identificado con la vida. La vida como proceso, sin embargo, se puede definir. No hay duda de que los organismos vivos poseen ciertos atributos que no se encuentran, o no de la misma manera, en los objetos inanimados. Diferentes autores han destacado distintas características, pero no he podido encontrar en la literatura una lista adecuada de ellas.

Destaquemos en la cita anterior la afirmación de que la vida como proceso se puede definir: Para hacerlo, el problema principal, como tantas veces en la investigación científica, es formular la pregunta más adecuada, esto es, la más productiva. Si nos preguntamos ¿qué es la vida?, difícilmente podamos salir de respuestas como las del diccionario. Si, en cambio, empezamos por preguntarnos ¿qué cosas están vivas?, el camino se pone más interesante, primero porque la pregunta se refiere a algo que podremos investigar y, segundo, porque marca el inicio de un itinerario que nuestros estudiantes pueden hacer por sí mismos, si bien con nuestra ayuda.

Empecemos, como propone Mayr, por buscar el tipo de características por las cuales los organismos vivos difieren de la materia inanimada. Esta pregunta y sus ramificaciones nos servirán para ejemplificar un modo específico de enseñar ciencias en la escuela, que busca proporcionar a los alumnos, al mismo tiempo, ciertos contenidos conceptuales propios de la disciplina (en este caso, las características de los seres vivos y los niveles de organización de la materia), y herramientas de pensamiento que llamamos competencias científicas.

Son dos objetivos complementarios que se potencian mutuamente. Recordemos ante todo que, como señalan Gabriel Gellon y sus colegas en otro libro incluido entre las lecturas sugeridas:

En el aula, la fuente última del saber es tradicionalmente el docente o el libro de texto. Pero un estudiante que nunca puede apreciar hasta qué punto las ideas científicas derivan del estudio de una realidad externa a nosotros tendrá una idea distorsionada del valor de un enunciado científico. Si en nuestras clases de ciencia la respuesta siempre está en los libros y nunca en los resultados de los experimentos, estamos proveyendo una visión mutilada o falsa de la ciencia.

 Si nos limitáramos a reemplazar una definición de diccionario por una lista de características de los seres vivos, habríamos mejorado muy poco: solo habríamos cambiado una versión de enciclopedia por otra. El camino que proponemos aquí es muy distinto: que los alumnos, partiendo de determinados ejemplos, y con la guía del docente, lleguen a una clasificación de un grupo de objetos en vivos y no vivos. Una vez que se tenga cierto acuerdo acerca de qué propiedades distinguen a la materia viva del resto, podremos establecer una definición de vida a partir de esas propiedades. Luego podremos aplicarla a nuevas situaciones para decidir si algo está vivo o no lo está. Este método nos permitirá construir definiciones operacionales, que siguen el orden lógico habitual en la práctica de la ciencia y evitan desplazarse a una reflexión filosófica, que para la ciencia suele resultar tan peligrosa como estéril.

Notemos, de paso, que el proceso es iterativo: una vez que se arriba a una definición derivada de un conjunto de objetos, es posible (y aun deseable) ponerla a prueba con otros objetos, para ver si los cubre satisfactoriamente y, si fuera necesario, refinar la definición. Para cumplir este proceso son necesarias capacidades que también es fundamental enseñar.

La enseñanza de esas capacidades será exitosa si los alumnos logran generar sus propias definiciones operacionales, basadas en criterios de clasificación también propios. En consonancia con lo que proponemos para el aula, esta misma frase es una definición operacional que permite medir el éxito de la enseñanza.

La experiencia del aula

¿Cómo proceder en el aula para aplicar estas ideas? En lo que sigue nos centraremos en la discusión del tema con estudiantes secundarios, aunque el método es adaptable a cualquier nivel escolar.

El primer paso es intentar llegar a una definición operacional de la vida a partir de algunos ejemplos (perro, bacteria, planta, piedra, etcétera) que los alumnos puedan clasificar como vivos o no vivos. Una vez hecha la clasificación, les pedimos que reflexionen sobre cómo la hicieron, y que hagan explícitos los criterios que utilizaron. Lo que queremos es que tomen conciencia de esos criterios y puedan explicarlos. A menudo, el proceso mismo de explicación los hace descubrir los límites de los criterios elegidos y los lleva a revisarlos.

No es necesario guiarlos en la elección de criterios, los que dependerán de la edad y la madurez de los alumnos: en niños pequeños probablemente aflore una asociación entre el movimiento y la vida, mientras que los mayores asociarán a los seres vivos con características como la capacidad de reproducirse, de crecer o de tener metabolismo.

Cualquiera sea la lista que los alumnos definan, la tomaremos como base para la siguiente etapa. Si no llegan a proponer todas las propiedades que al docente le interesan, este podrá guiarlos señalando aspectos pasados por alto de los seres vivos de los que se partió, por ejemplo, además de los nombrados, homeostasis, capacidad de evolucionar y otros.

Con esto se habrá llegado a una definición operacional del estilo ‘un ser vivo es aquel que presenta las siguientes propiedades: …’. Una vez allí, conviene que el docente ponga en crisis la definición incorporando un objeto nuevo que entre en conflicto con ella, sea porque quedaría mal clasificado, o porque no hubiese posibilidad de clasificarlo. Más adelante mencionamos varios posibles, que suelen desafiar a los alumnos. El objetivo de la nueva incorporación es hacer evidente la necesidad de refinar la lista de criterios y de ajustar las propiedades seleccionadas.

Niveles de organización

Uno de los puntos más interesantes de esta manera de enfrentar el problema de cómo definir la vida es que permite conectarlo inmediatamente con los niveles de organización de la materia, por lo menos en el ámbito propio de la biología. Esos niveles de organización abarcan desde átomos y moléculas, pasando por células, tejidos, órganos y sistemas de órganos, hasta organismos pluricelulares e incluso más allá, con poblaciones y comunidades. Hay mucho que ganar relacionando ambos temas.

Tomando el rango de organización que va desde los átomos a los organismos pluricelulares, podemos sugerir a los alumnos que apliquen los criterios que definieron a los distintos niveles. Llegarán rápidamente a la conclusión de que átomos y moléculas no están vivos, y que, a partir del nivel celular, se encuentran presentes las propiedades de los seres vivos que especificaron. De esta manera, concluirán que una célula es la mínima unidad que posee vida, algo que habrán deducido en vez de aceptado axiomáticamente, como ocurre con frecuencia. Les quedará luego claro que el siguiente nivel, el de los tejidos, que están compuestos por células, también está vivo, y así sucesivamente. Esto lleva a una conclusión importante: hay una continuidad de la vida, una integración de funciones vitales simples en otras más complejas.

La definición operacional de vida en situaciones límite

Llegados a este punto se impone volver a desafiar la definición acordada con nuevos ejemplos, que el docente elige con la intención de crear dudas sobre la clasificación. Se puede indicar a los estudiantes que analicen, entre otros, los casos de una semilla, un virus, un animal muerto, una manzana caída de un árbol, un espermatozoide y el fuego.

Una semilla plantea una situación difícil: por un lado, en condiciones apropiadas germina y da origen a una planta, que es sin duda ser vivo; pero, ¿y si no germina? Las semillas son en realidad una etapa del ciclo vital de un ser vivo, es decir, de la planta que germina a partir de ella. Pero, por otro lado, no parecen presentar algunas de las propiedades de los seres vivos: no se reproducen en forma de nuevas semillas, sino que contienen un embrión que crecerá para dar un organismo que, a su vez, producirá más semillas. El individuo, en el caso de la semilla, es el embrión contenido en ella.

Sin embargo, las semillas son capaces de reaccionar a estímulos del medio, como las condiciones adecuadas para su germinación. Las células de su interior respiran y realizan todas las reacciones químicas de cualquier célula, pero lo hacen muy lentamente. De hecho, su metabolismo es tan reducido que es prácticamente indetectable. En esos casos muchas veces se habla de vida latente. Un argumento a presentar a los alumnos si colocan a la semilla en el grupo de los no vivos es que la planta a la que dé origen provendría en tal caso de algo no vivo, y esto no es posible: sobre la base de mucha evidencia experimental sabemos que no ocurre generación espontánea de vida a partir de materia no viva.

Acerca de los virus, la comunidad científica no logra consenso: hay quienes los consideran vivos y quienes no. Para empezar, no son células, lo que desafía el concepto de que las células son la unidad mínima de la vida: se ubican en el nivel molecular de organización. Sin embargo, son agrupaciones muy complejas de moléculas que presentan propiedades que las moléculas comunes no tienen. Mientras un virus no está infectando una célula, no posee ninguna propiedad de los seres vivos: es una agrupación totalmente inerte de moléculas. Pero en cuanto infecta una célula, se comporta como un parásito que utiliza recursos de ella para sobrevivir: puede fabricar copias de su ácido nucleico y generar nuevas partículas virales, por lo que claramente se reproduce. También es capaz de evolucionar, como vemos en las mutaciones de los virus de la gripe, que obligan a generar nuevas vacunas cada año. Si nos ceñimos a rajatabla a la idea de que los seres vivos deben consistir de, por lo menos, una célula, los virus no están vivos. Pero si somos más flexibles, apreciaremos que son capaces de hacer cosas que no podrían hacer si no estuvieran vivos. A los efectos del trabajo en el aula, no es estrictamente necesario despejar este dilema. De hecho, es un excelente ejemplo de cómo, en la ciencia, no siempre hay acuerdo total ni siempre existe la posibilidad de arribar en todos los casos a respuestas ‘correctas’.

Un animal muerto permite analizar una situación que podríamos considerar opuesta a la vida. Pero, ¿es un ser muerto igual a un objeto no viviente? Al intentar responder a esta pregunta, es frecuente que los alumnos inviertan causa y consecuencia, algo que –de ocurrir– es importante hacerles notar. Muchas veces dicen: ‘Como está muerto, no puede hacer lo que hacía cuando estuvo vivo’. En realidad, se trata de un animal que hacía lo que hace cualquier ser vivo, pero dejó de hacerlo. Y a eso llamamos muerte, algo que, también como una definición operacional, podemos establecer a partir de la definición de vida, porque una depende de modo indisoluble de la otra. Un objeto no vivo nunca lo estuvo ni lo estará.

Otro asunto que puede ser interesante discutir es que, después de que el animal murió, la mayor parte de sus células continúan vivas, y algunas de ellas suelen permanecer así por horas. Podríamos intentar definir la muerte, entonces, como la pérdida del nivel de organización más alto, el del organismo. En los trasplantes de órganos y tejidos, estos están vivos, aunque el organismo donante ya no lo esté, de modo que los trasplantes proporcionan otra posible línea de argumentación para discutir las diferencias entre lo vivo y lo no vivo.

Una manzana en el árbol se compone de células que están vivas, pero la manzana no se reproduce para dar manzanas. La manzana no es un organismo, no es un individuo. Cuando está en el árbol, se comporta como un órgano, no muy distinto de nuestro hígado. Una manzana no es un ser vivo sino una parte de un ser vivo. Un espermatozoide o cualquier gameto es una célula que claramente está viva. Pero los gametos tienen una función bastante limitada: si un espermatozoide fecunda un óvulo, se forma una célula nueva que ya no es uno ni el otro, sino una combinación de ambos, y cuyas duplicaciones sucesivas generarán un embrión, y este luego será un animal pluricelular. Pero para ese momento el espermatozoide dejó de existir como tal.

Un espermatozoide no se puede reproducir para dar lugar a más espermatozoides, pero eso no lo excluye de la compañía de los seres vivos, porque es una célula que forma parte del ciclo de vida de un individuo, aunque su ciclo propio de vida termine tanto al fecundar un óvulo como al morir. El criterio de reproducción de los seres vivos es muy relativo y debe ser tomado con flexibilidad: más allá de que el individuo se reproduzca, debemos considerar que la especie lo haga.

El fuego es un ejemplo muy interesante y divertido. Los niños muy pequeños suelen pensar que está vivo, en gran parte porque se mueve, se alimenta y respira. Pero incluso los más grandes advierten que el fuego consume un combustible, es decir, se alimenta. Recordemos que el alimento o combustible por excelencia de los seres vivos es la glucosa, pero el fuego puede usar como combustible una amplia variedad de moléculas. Además, consume oxígeno y expele dióxido de carbono como lo hacen los seres vivos, es decir que tiene toda la apariencia de respirar y tener metabolismo. Sin embargo, le falta la capacidad de evolucionar, de mantener cierta identidad y de transmitirla a una descendencia, pues cambia según lo que consume.

Sugerencias para el aula

Hasta aquí presentamos algunas posibles situaciones problemáticas para trabajar las definiciones de vida y de niveles de organización. Son solo ejemplos: el docente podría elegir otros y descartar algunos de los que dimos, en función del recorrido mental por el que desee conducir a sus alumnos. En nuestra experiencia advertimos que la secuencia relatada se enriquece mucho con el trabajo en grupo en el aula. Es fundamental que el docente tenga claro, antes de comenzar, qué quiere enseñar. Del lado de los conceptos, se pueden cubrir las características de los seres vivos, la célula como mínima organización viva y niveles de organización de la materia. Del lado de las competencias científicas o habilidades de pensamiento: observar, comparar, clasificar con criterios propios o dados y argumentar sobre la base de evidencias, entre otras.

En un libro mencionado entre las lecturas sugeridas, el físico y educador Arnold B Arons (1916-2001) incluyó una lista de lo que consideró que una persona debería ser capaz de hacer para considerarla científicamente alfabetizada. Los primeros dos puntos que menciona son los siguientes, y son claramente adaptables a lo trabajado en este artículo:

  • Reconocer que los conceptos científicos (por ejemplo, velocidad, aceleración, fuerza, energía) son inventados (o creados) por actos de la imaginación e inteligencia humanas, y no son objetos tangibles o sustancias descubiertas accidentalmente, como un fósil, una planta o minerales nuevos.
  • Reconocer que para ser entendidos y usados correctamente, dichos términos requieren definiciones operacionales cuidadosas, basadas en experiencia compartida y en palabras simples definidas previamente; entender, en otras palabras, que un concepto científico incluye una idea primero y un nombre después, y que su comprensión no reside de por sí en la terminología técnica.

La siguiente serie de tareas y preguntas puede ayudar a conducir diversas partes del ejercicio:

  • Expliciten qué características de los objetos que analizaron tomaron en cuenta para clasificarlos como algo vivo o no vivo.
  • ¿Encontraron objetos que no resultan sencillos de clasificar? ¿Por qué?
  • Escriban la definición operacional de vida a la que llegaron. ¿En qué coincide y en qué difiere de otras generadas por integrantes de la misma clase?
  • Una molécula posee propiedades que van más allá de las de los átomos que la componen. Podemos afirmar algo similar para cada nivel de organización: cada nivel presenta propiedades ausentes en el nivel anterior. Esas propiedades se llaman emergentes. Discutan la afirmación de que la vida es una propiedad emergente.
  • Den una opinión fundamentada acerca de las dos afirmaciones que siguen. Como un perro está vivo, presenta estas propiedades. Como un perro presenta estas propiedades, está vivo.
  • Realicen una investigación bibliográfica para conocer las distintas definiciones de vida que fueron surgiendo a lo largo de la historia.

Para concluir

Hemos intentado mostrar una forma de enseñanza basada en la idea de que la ciencia tiene una base empírica que sustenta sus ideas teóricas, y en que estas se construyen en una acción de ida y vuelta permanente. Con este enfoque, podemos establecer el concepto de vida a partir de la presencia de determinadas propiedades y dejar de lado concebirla como una cualidad inherente o, en los términos del Diccionario de la Real Academia, una ‘fuerza o actividad interna sustancial’. Por lo tanto, como en esta concepción la vida no es algo que un objeto posee o no posee, habrá situaciones de borde, como ocurre con toda clasificación, y nos veremos obligados a tomar decisiones en cada caso particular.

Esto pone de manifiesto que en nuestra visión no proponemos averiguar qué está vivo y qué no, como si se tratara de algo indiscutible que ocurre en la realidad (recordemos el primer punto de la lista de Arons). Proponemos, como un camino más fecundo para la ciencia, una definición operacional de la vida, que claramente puede ser modificada si aparece nueva evidencia. A diferencia de otras situaciones, en que nos enfrentamos con un fenómeno a observar y comprender, pensamos que en esto se trata de construir un concepto y de justificar los criterios que llevan a él.

Este método puede aplicarse a muchas otras cuestiones de la enseñanza de las ciencias naturales. Por una parte, el contenido conceptual de la ciencia puede ser en lo esencial reconstruido por cada estudiante recurriendo a operaciones que configuran un itinerario bastante parecido al método científico. Pero, por otra, los alumnos podrán adquirir en ruta las habilidades de pensamiento o competencias científicas que procuramos enseñarles, pues ellas les serán necesarias para ese proceso de reconstrucción. Recordemos que no es cierto que el docente posea todo el saber, como tampoco que los alumnos, por sí solos, puedan descubrirlo. El docente es el guía que conoce el terreno: propone, sugiere, desafía, elige los lugares por donde seguir y en donde detenerse. Pero cada estudiante debe hacer su propia recorrida del camino.

Lecturas sugeridas

ARONS A B, 1997, Teaching Introductory Physics, John Wiley and Sons, Nueva York.

GELLON G et al., 2005, La ciencia en el aula. Lo que nos dice la ciencia de cómo enseñarla, Paidós, Buenos Aires.

MAYR E, 1982, The Growth of Biological Thought, Harvard University Press, Cambridge Mass.

Guadalupe Nogués Doctora en ciencias biológicas, UBA. Profesora de enseñanza secundaria de biología. Miembro de la Asociación Civil Expedición Ciencia.  Ciencia Hoy, Volumen 22, número 128 agosto – septiembre 2012

Anuncios

5 comentarios en “¿Qué es un ser vivo?

  1. Como siempre, impecable! Me encantaria poder hacer algo asi con mis alumnos. Pero sin excepcion, ante la pregunta inicial “que es un ser vivo?”, los chicos recitan lo que aprendieron en la primaria: MRS GREN (movement, reproduction, sensitivity, growth, respiration, excretion, nutrition). A partir de eso es muy dificil que los chicos “piensen” realmente. Alguna sugerencia?

    Me gusta

    • Es difícil cuando necesitamos que “desaprendan” algo primero para poder aprender mejor. Pero empezar desafiando eso que creen que saben mediante ejemplos que les planteen una contradicción, suele ser un buen comienzo.

      Me gusta

  2. Pingback: ¡Evolucionemos! | Cómo Sabemos

  3. Pingback: El lenguaje de las neuronas | Cómo Sabemos

  4. Pingback: ¿Cómo sabemos que el virus HIV es la causa del SIDA? | Cómo Sabemos

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s